VEGF-A promotes the motility of human melanoma cells through the VEGFR1-PI3K/Akt signaling pathway

In Vitro Cell Dev Biol Anim. 2022 Sep;58(8):758-770. doi: 10.1007/s11626-022-00717-3. Epub 2022 Aug 23.

Abstract

Vascular endothelial growth factor A (VEGF-A) and its receptors (VEGFR1 and R2) play important roles in the progression of malignant melanoma through tumor angiogenesis. However, it is not clear whether the VEGF-A/VEGFR1 signaling pathway is involved in the proliferation and migration of melanoma cells. Thus, the effect of VEGF-A on cell migration was investigated in human melanoma cell lines. Of several splicing variants of VEGF-A, VEGF165 is the most abundant and responsible for VEGF-A biological potency. VEGF165 facilitated the migration of melanoma cells in both a chemotactic and chemokinetic manner, but cell proliferation was not affected by VEGF165. VEGF165 also induced the phosphorylation of Akt. In addition, VEGF165-induced cell migration was inhibited significantly by VEGFR1/2 or a VEGFR1-neutralizing antibody. Furthermore, the downregulation of VEGFR1 via the transfection of VEGFR1-targeting antisense oligonucleotides suppressed VEGF165-induced cell migration. Moreover, wortmannin, an inhibitor of phosphatidylinositol-3 kinase (PI3K) in the PI3K/Akt pathway, suppressed VEGF165-induced Akt phosphorylation and VEGF165-induced cell migration. These findings suggest that the motility of melanoma cells is regulated by signals mediated through the PI3K/Akt kinase pathway with the activation of VEGFR1 tyrosine kinase by VEGF165. Thus, the downregulation of signaling via VEGF-A/VEGFR1 might be an effective therapeutic approach that could prevent the progression of malignant melanoma.

Keywords: Cell motility; Melanoma; PI3K/Akt signaling pathway; VEGF-A; VEGFR1.

MeSH terms

  • Animals
  • Antibodies, Neutralizing / pharmacology
  • Cell Movement / genetics
  • Humans
  • Melanoma* / genetics
  • Oligonucleotides, Antisense / pharmacology
  • Phosphatidylinositol 3-Kinase / metabolism
  • Phosphatidylinositol 3-Kinase / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphatidylinositols / pharmacology
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction
  • Vascular Endothelial Growth Factor A* / metabolism
  • Wortmannin / pharmacology

Substances

  • Antibodies, Neutralizing
  • Oligonucleotides, Antisense
  • Phosphatidylinositols
  • Vascular Endothelial Growth Factor A
  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt
  • Wortmannin