NaCl Micro-Crystal as a Molecular Mold for Enhanced Synthesis of Planar Phenazines and Their Applications on Chemosensing and a Full-Color Fluorescent Material

ACS Appl Mater Interfaces. 2022 Aug 31;14(34):39441-39450. doi: 10.1021/acsami.2c03602. Epub 2022 Aug 22.

Abstract

NaCl has been successfully used as a template for the synthesis of 2D nanomaterials, but it is seldom used for the construction of flat small organic molecules. Herein, a simple, low-cost, and highly efficient synthesis of phenazines with planar main frames, such as 5-phenyl-5,14-dihydro-5,7,12,14-tetraazapentacene, in the presence of NaCl micro-crystal as a kind of molecular mold is described. The reactants were mixed with NaCl powder and heated to 320 °C for 5 min. Yields >90% were readily achieved after a simple precipitation in water. The effectiveness of NaCl crystal as a mold with HCl was confirmed by comparison with common inorganic salts, SiO2, and γ-Al2O3 with HCl together with combinations including NaNO3 + HNO3, Na2SO4 + H2SO4, NaH2PO4 + H3PO4, and NaH2PO4 + polyphosphoric acid. The mechanism was deduced with the aid of computer simulation, which confirms the stabilization of 5,14-dihydro-5,7,12,14-tetraazapentacene by the NaCl surface. DMSO solution of a product, 1,3-dihydro-imidazo[4,5-b]phenazin-2-one, showed enhanced fluorescence in H2O, and it was used as a fluorescent probe for pH and Hg2+. A full-color material was prepared by mixing precursors of epoxy resin and phenazines, and its fluorescent color could be adjusted by the ratio of phenazines.

Keywords: Hg2+ sensor; NaCl-enhanced synthesis; full-color fluorescence; molecular mold; phenazine.