Recent progress on methods for estimating and updating large phylogenies

Philos Trans R Soc Lond B Biol Sci. 2022 Oct 10;377(1861):20210244. doi: 10.1098/rstb.2021.0244. Epub 2022 Aug 22.

Abstract

With the increased availability of sequence data and even of fully sequenced and assembled genomes, phylogeny estimation of very large trees (even of hundreds of thousands of sequences) is now a goal for some biologists. Yet, the construction of these phylogenies is a complex pipeline presenting analytical and computational challenges, especially when the number of sequences is very large. In the past few years, new methods have been developed that aim to enable highly accurate phylogeny estimations on these large datasets, including divide-and-conquer techniques for multiple sequence alignment and/or tree estimation, methods that can estimate species trees from multi-locus datasets while addressing heterogeneity due to biological processes (e.g. incomplete lineage sorting and gene duplication and loss), and methods to add sequences into large gene trees or species trees. Here we present some of these recent advances and discuss opportunities for future improvements. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.

Keywords: maximum likelihood; multiple sequence alignment; phylogenetic placement; phylogenomics; phylogeny estimation; taxon identification.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gene Duplication*
  • Genomics* / methods
  • Phylogeny
  • Sequence Alignment