Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer's disease

Cell Metab. 2022 Sep 6;34(9):1248-1263.e6. doi: 10.1016/j.cmet.2022.07.014. Epub 2022 Aug 19.

Abstract

The drivers of sporadic Alzheimer's disease (AD) remain incompletely understood. Utilizing directly converted induced neurons (iNs) from AD-patient-derived fibroblasts, we identified a metabolic switch to aerobic glycolysis in AD iNs. Pathological isoform switching of the glycolytic enzyme pyruvate kinase M (PKM) toward the cancer-associated PKM2 isoform conferred metabolic and transcriptional changes in AD iNs. These alterations occurred via PKM2's lack of metabolic activity and via nuclear translocation and association with STAT3 and HIF1α to promote neuronal fate loss and vulnerability. Chemical modulation of PKM2 prevented nuclear translocation, restored a mature neuronal metabolism, reversed AD-specific gene expression changes, and re-activated neuronal resilience against cell death.

Keywords: Alzheimer's disease; WGCNA; Warburg effect; cancer; direct conversion; induced neurons; metabolomics; pyruvate kinase M; reprogramming.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease*
  • Glycolysis
  • Humans
  • Neoplasms* / pathology
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Pyruvate Kinase / genetics
  • Pyruvate Kinase / metabolism

Substances

  • Protein Isoforms
  • Pyruvate Kinase