A novel flood risk mapping approach with machine learning considering geomorphic and socio-economic vulnerability dimensions

Sci Total Environ. 2022 Dec 10;851(Pt 1):158002. doi: 10.1016/j.scitotenv.2022.158002. Epub 2022 Aug 17.

Abstract

Quantifying flood hazards by employing hydraulic/hydrodynamic models for flood risk mapping is a widely implemented non-structural flood management strategy. However, the unavailability of multi-domain and multi-dimensional input data and expensive computational resources limit its application in resource-constrained regions. The fifth and sixth IPCC assessment reports recommend including vulnerability and exposure components along with hazards for capturing risk on human-environment systems from natural and anthropogenic sources. In this context, the present study showcases a novel flood risk mapping approach that considers a combination of geomorphic flood descriptor (GFD)-based flood susceptibility and often neglected socio-economic vulnerability components. Three popular Machine Learning (ML) models, namely Decision Tree (DT), Random Forest (RF), and Gradient-boosted Decision Trees (GBDT), are evaluated for their abilities to combine digital terrain model-derived GFDs for quantifying flood susceptibility in a flood-prone district, Jagatsinghpur, located in the lower Mahanadi River basin, India. The area under receiver operating characteristics curve (AUC) along with Cohen's kappa are used to identify the best ML model. It is observed that the RF model performs better compared to the other two models on both training and testing datasets, with AUC score of 0.88 on each. The socio-economic vulnerability assessment follows an indicator-based approach by employing the Charnes-Cooper-Rhodes (CCR) model of Data Envelopment Analysis (DEA), an efficient non-parametric ranking method. It combines the district's relevant socio-economic sensitivity and adaptive capacity indicators. The flood risk classes at the most refined administrative scale, i.e., village level, are determined with the Jenks natural breaks algorithm using flood susceptibility and socio-economic vulnerability scores estimated by the RF and CCR-DEA models, respectively. It was observed that >40 % of the villages spread over Jagatsinghpur face high and very high flood risk. The proposed novel framework is generic and can be used to derive a wide variety of flood susceptibility, vulnerability, and subsequently risk maps under a data-constrained scenario. Furthermore, since this approach is relatively data and computationally parsimonious, it can be easily implemented over large regions. The exhaustive flood maps will facilitate effective flood control and floodplain planning.

Keywords: Data envelopment analysis; Flood risk assessment; Flood susceptibility mapping; Geomorphic approach; Supervised learning; Vulnerability mapping.

MeSH terms

  • Floods*
  • Machine Learning
  • ROC Curve
  • Rivers*
  • Socioeconomic Factors