Application of network pharmacology and molecular docking approach to explore active compounds and potential pharmacological mechanisms of Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen for treatment of heart failure

Medicine (Baltimore). 2022 Aug 19;101(33):e30102. doi: 10.1097/MD.0000000000030102.

Abstract

Background: Heart failure (HF) is the end stage of the development of heart disease, whose prognosis is poor. The previous research of our team indicated that the formulae containing Aconiti Lateralis Radix Praeparata and Lepidii Semen Descurainiae Semen (ALRP-LSDS) could inhibit myocardial hypertrophy, inhibit cardiomyocyte apoptosis, delay myocardial remodeling (REM), and improve the prognosis of patients with HF effectively. In order to explore the mechanism of ALRP-LSDS for the treatment of HF, a combined approach of network pharmacology and molecular docking was conducted.

Methods: Public database TCMSP was used to screen the active compounds of ALRP-LSDS. The targets of screened active compounds were obtained from the TCMSP database and predicted using the online analysis tool PharmMapper. The targets of HF were obtained from 6 databases including GeneCards, OMIM, DrugBank, TTD, PharmGKB, and DisGeNET. Protein-protein interaction and enrichment analysis were performed, respectively, by STRING and Metascape online tools after merging the targets of active compounds and HF. Cytoscape software was used to conduct networks. Finally, molecular docking was performed by Vina to verify the correlation between key targets and active compounds.

Results: Final results indicated that the active compounds including β-sitosterol, isorhamnetin, quercetin, kaempferol, and (R)-norcoclaurine, the targets including AKT1, CASP3, and MAPK1 might be the main active compounds and key targets of ALRP-LSDS for the treatment of HF separately. The binding ability of AKT1 to the main active compounds was better compared with the other 2 key targets, which means it might be more critical. The pathways including AGE-RAGE signaling pathway in diabetic complications, Pathways in cancer, and Fluid shear stress and atherosclerosis might play important roles in the treatment of HF with ALRP-LSDS. In general, ALRP-LSDS could inhibit cardiomyocyte apoptosis, delay REM, and improve cardiac function through multicompound, multitarget, and multipathway, which contributes to the treatment of HF.

Conclusions: Based on the combined approach of network pharmacology and molecular docking, this study screened out the main active compounds, key targets, and main pathways of ALRP-LSDS for the treatment of HF, and revealed its potential mechanisms, providing a theoretical basis for further research.

MeSH terms

  • Aconitum* / chemistry
  • Drugs, Chinese Herbal* / pharmacology
  • Drugs, Chinese Herbal* / therapeutic use
  • Heart Failure* / drug therapy
  • Humans
  • Molecular Docking Simulation
  • Network Pharmacology
  • Seeds

Substances

  • Drugs, Chinese Herbal