Extraordinary intense blue Tl+ lone-pair photoluminescence from thallium(I) chloride hydroborate Tl3Cl[B12H12]

Dalton Trans. 2022 Sep 13;51(35):13331-13341. doi: 10.1039/d2dt01867e.

Abstract

Microcrystalline powder of previously unknown thallium(I) chloride hydroborate Tl3Cl[B12H12] was obtained through the reaction of thallium(I) oxocarbonate Tl2[CO3] with an aqueous solution of (H3O)2[B12H12] in the presence of chloride anions. Tl3Cl[B12H12] crystallises in a primitive, orthorhombic lattice with the space group Pnma (a = 835.189(7) pm, b = 970.132(8) pm and c = 1597.912(12) pm for Z = 4) showing a distorted hexagonal anti-perovskite type arrangement of the ions. The structure features two thallium sites with mixed coordination spheres consisting of borate related hydrogen atoms and chloride anions with coordination numbers of eleven and thirteen. Tl3Cl[B12H12] shows strong excitation bands at 240 and 260 nm attributed to the 1S03P2 and 1S03P1 interconfigurational transitions of the Tl+ 6s2 cations, respectively. The emission spectrum at 300 K upon VUV excitation exhibits a broad band at 440 nm with a quantum efficiency of 41%. In addition, temperature-dependent emission spectra, colour points, reflectance, decay time, thermal quenching curve and radioluminescence spectra for Tl3Cl[B12H12] were determined.