Association between polymorphisms and hypermethylation of CD36 gene in obese and obese diabetic Senegalese females

Diabetol Metab Syndr. 2022 Aug 18;14(1):117. doi: 10.1186/s13098-022-00881-2.

Abstract

Background: Obesity and related metabolic disorders are associated with genetic and epigenetic alterations. In this study, we have examined the association between polymorphisms and hypermethylation of the CD36 gene promoter with obesity in Senegalese females with or without type 2 diabetes mellitus to identify novel molecular markers of these pathologies (obesity and type 2 diabetes mellitus).

Materials and methods: The study was conducted in Senegal with healthy lean control, obese, and obese diabetic (age; 49.98 years ± 7.52 vs 50.50 years ± 8.76 vs 51.06 ± 5.78, and body mass index (BMI); 24.19 kg/m2 ± 2.74 vs 34.30 kg/m2 ± 4.41 vs 33.09 kg/m2 ± 4.30). We determined three genetic polymorphisms of CD36 i.e., rs1761667, rs1527483, and rs3211867 by real-time polymerase chain reaction, and methylation of CPG islands of CD36 was assessed by methylation-specific polymerase chain reaction (MS-PCR) in DNA isolated from peripheral blood of each participant. Plasma sCD36 levels and DNA methyltransferase 3a (DNMT3a) levels were determined by enzyme-linked immunosorbent assay (ELISA). According to the standard laboratory protocol, all biochemical parameters were analyzed from fasting serum or plasma.

Results: For rs1761667, obese and obese diabetic subjects had statistically significant different parameters depending on the genotypic distribution. These were waist size for obese and HDL cholesterol for obese diabetic, they were significantly higher in subjects harboring GG genotype of rs1761667 (respectively p = 0.04 and p = 0.04). For rs3211867, obese subjects harboring the AA/AC genotype had significantly higher BMI (p = 0.02) and total cholesterol (p = 0.03) than obese subjects harboring the CC genotype. At the same time, the obese diabetic subjects harboring the AA/AC genotype had total cholesterol levels significantly higher than the obese diabetic subjects harboring the CC genotype (p = 0.03). For rs1527483, only the control subjects had statistically significant different parameters depending on the genotypic distribution. The control subjects harboring the GG genotype had a significantly higher BMI than the control subjects harboring the AA/AG genotype (p = 0.003). The CD36 gene methylation was significantly 1.36 times more frequent in obese and obese diabetic compared to lean control (RR = 1.36; p = 0.04). DNMT3a levels were higher in subjects with CD36 gene methylation than in subjects without CD36 gene methylation in each group. Obese diabetic subjects with CD36 gene methylation had significantly fewer plasmas sCD36 (p = 0.03) and more LDL-cholesterol (p = 0.01) than obese diabetic subjects without CD36 gene methylation. In the control group, an increase in sCD36 levels would be associated with a decrease in total cholesterol and triglyceride levels (coef = -7647.56 p = 0.01 and coef = -2528.50 p = 0.048, respectively) would be associated with an increase in LDL cholesterol levels. For the obese group, an increase in sCD36 levels would be associated with an increase in fasting insulin levels (coef = 490.99 p = 0.02) and a decrease in glycated hemoglobin levels (coef = -1196.26 p = 0.03). An increase in the sCD36 levels would be associated with an increase in the triglyceride levels in the obese diabetic group (coef = 9937.41 p = 0.02). The AA/AC genotype of SNP rs3211867 polymorphism was significantly associated with CD36 gene methylation in the control and obese diabetic groups (respectively p = 0.05, p = 0.002; 95% CI).

Conclusion: These observations suggest that polymorphisms and epigenetic changes in CD36 gene promoters may be implicated in the onset of obesity and its related complication type 2 diabetes mellitus.

Keywords: CD36 gene; Methylation; Obesity; Polymorphisms; Type 2 diabetes.