A joint method to assess pollution status and source-specific human health risks of potential toxic elements in soils

Environ Monit Assess. 2022 Aug 18;194(10):685. doi: 10.1007/s10661-022-10353-9.

Abstract

Potential toxic elements (PTEs) in soils follow various exposure pathways (e.g., ingestion, dermal contact, and inhalation) when migrating to the human body, and can threaten human health. The objective of this study was to quantitatively evaluate the pollution status and human health risk for different age groups (i.e., children and adults) caused by source-specific PTEs in the soil. A total of 425 topsoil samples (0-20 cm) were collected in the Zhangqiu District of China, and contents of eight PTEs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) were analyzed simultaneously. The PTE sources were identified using a geostatistical method, and positive matrix factorization was used to apportion the contribution rate of each PTE source for human health risk of different age groups based on a health risk assessment model. Results showed that: (1) As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn contents all exceeded the background values in soil, indicating that there had been a slight enrichment of soil PTEs over time; (2) Cr and Ni were derived from natural sources, while Cd, Cu, and Zn were derived from transportation sources; industrial emissions and coal burning intensified pollution from Hg, Pb, and As in soils, as shown in the average contribution percentages of natural sources (24.36%), transportation sources (33.79%), and industrial sources (41.85%); (3) the non-carcinogenic risk caused by soil PTEs did not endanger human health, but the carcinogenic risk was close to the risk threshold, and should be given attention; the largest carcinogenic risk (36.53%) and non-carcinogenic risk (36.01%) for children were attributed to industrial sources, while the largest carcinogenic risk (34.98%) and non-carcinogenic risk (37.06%) for adults were attributed to transportation sources. The results presented in this study provide support for effectively preventing PTE health risks in different age groups from source-specific PTE pollution of the soil.

Keywords: Human health risk; Pollution status; Potential toxic elements; Soil; Source-specific.

MeSH terms

  • Adult
  • Cadmium
  • Child
  • China
  • Environmental Monitoring / methods
  • Humans
  • Lead
  • Mercury*
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Cadmium
  • Lead
  • Mercury