P2Y14 receptor in trigeminal ganglion contributes to neuropathic pain in mice

Eur J Pharmacol. 2022 Sep 15:931:175211. doi: 10.1016/j.ejphar.2022.175211. Epub 2022 Aug 15.

Abstract

Trigeminal nerve injury is a common complication of various dental and oral procedures, which could induce trigeminal neuropathic pain but lack effective treatments. P2 purinergic receptors have emerged as novel therapeutic targets for such pain. Recent reports implied that the P2Y14 receptor (P2Y14R) was activated and promoted orofacial inflammatory pain and migraine. However, the role and mechanism of P2Y14R in trigeminal neuropathic pain remain unknown. We induced an orofacial neuropathic pain model by chronic constriction injury of the infraorbital nerve (CCI-ION). Von-Frey tests showed that CCI-ION induced orofacial mechanical hypersensitivity. The increased activating transcription factor 3 (ATF3) expression in the trigeminal ganglion (TG) measured by immunofluorescence confirmed trigeminal nerve injury. Immunofluorescence showed that P2Y14R was expressed in trigeminal ganglion neurons (TGNs) and satellite glial cells (SGCs). RT-qPCR and Western blot identified increased expression of P2Y14R in TG after CCI-ION. CCI-ION also upregulated interleukin-1β (IL-1β), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-α (TNF-α) in TG. Notably, CCI-ION-induced mechanical hypersensitivity and pro-inflammatory cytokines production were decreased by a P2Y14R antagonist (PPTN). Trigeminal administration of P2Y14R agonist (UDP-glucose) evoked orofacial mechanical hypersensitivity and increased pro-inflammatory cytokines above in TG. Furthermore, CCI-ION induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 in TG, which also were reduced by PPTN. The inhibitors of ERK1/2 (U0126) and p38 (SB203580) decreased these upregulated pro-inflammatory cytokines after CCI-ION. Collectively, this study revealed that P2Y14R in TG contributed to trigeminal neuropathic pain via ERK- and p38-dependent neuroinflammation. Thus, P2Y14R may be a potential drug target against trigeminal neuropathic pain.

Keywords: Mitogen-activated protein kinases; Neuroinflammation; Neuropathic pain; Purinergic receptor; Trigeminal nervous system.

MeSH terms

  • Animals
  • Facial Pain / metabolism
  • Hyperalgesia / metabolism
  • Mice
  • Neuralgia* / etiology
  • Neuralgia* / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Trigeminal Ganglion
  • Trigeminal Nerve Injuries* / metabolism