Graphene Infrared Radiation Management Targeting Photothermal Conversion for Electric-Energy-Free Crude Oil Collection

J Am Chem Soc. 2022 Aug 31;144(34):15562-15568. doi: 10.1021/jacs.2c04454. Epub 2022 Aug 18.

Abstract

Graphene has been widely used as a solar absorber for its broad-band absorption. However, targeting a higher photothermal efficiency, the intrinsic infrared radiation loss of graphene requires to be further reduced. Herein, band structure engineering is performed to modulate graphene infrared radiation. Nitrogen-doped vertical graphene is grown on quartz foam (NVGQF) by the plasma-enhanced chemical vapor deposition method. Under the premise of keeping high solar absorption (250-2500 nm), graphitic nitrogen doping effectively modulates the infrared emissivity (2.5-25 μm) of NVGQF from 0.96 to 0.68, reducing the radiation loss by ∼31%. Based on the excellent photothermal properties of NVGQF, a temperature-gradient-driven crude oil collecting raft is designed, where the crude oil flows along the collecting path driven by the viscosity gradient without any external electric energy input. Compared with a nondoped vertical graphene quartz foam raft, the NVGQF raft with a superior photothermal efficiency shows a significantly enhanced crude oil collecting efficiency by three times. The advances in this work suggest broad radiation-managed application platforms for graphene materials, such as seawater desalination and personal or building thermal management.