Ferrocene-Bearing Dodecylphthalocyanines: Synthesis, Spectroscopic and Electrochemical Behavior

Inorg Chem. 2022 Aug 29;61(34):13306-13321. doi: 10.1021/acs.inorgchem.2c01101. Epub 2022 Aug 18.

Abstract

Ferrocenylbutoxy-bearing dodecylated phthalocyanines, MPc(C12H25)x(OC4H8Fc)y with M = 2H (compound series 6 and 8) or Zn (compound series 5, 7 and 9), x ≤ 8 and y ≤ 4, were synthesized through either metal-free statistical condensation between 3,6-bis(dodecyl)phthalonitrile, 2, and 4- (1), or 3-(4'-ferrocenylbutoxy)phthalonitrile, 4, or a zinc template statistical condensation between 4,5-bis(dodecyl)phthalonitrile, 3, and 1 in the presence of anhydrous zinc acetate, or by zinc insertion into metal-free phthalocyanines. Compounds were designed to have eight nonperipheral dodecyl substituents, six nonperipheral dodecyl, either one peripheral or one nonperipheral 4'-ferrocenylbutoxy substituent, four nonperipheral dodecyl and two peripheral 4'-ferrocenylbutoxy substituents, or four peripheral 4'-ferrocenylbutoxy substituents. The compound having six peripheral dodecyl and one peripheral 4'-ferrocenylbutoxy substituents was also synthesized. Metal-free and zinc complex Q-band maximum absorption wavelengths increased nonlinearly from 704 to 725 nm for the Qy-band of metal-free compounds, or from 676 to 699 nm for the Q-band of zinc complexes in moving from all peripheral-substituted to all non-peripheral-substituted complexes. A rare case of accidental Q-band degeneracy where only one electronic Q-band is observed for asymmetrical zinc complexes NOT having D4h symmetry, compounds 5, 7b-e, and 9b, is also described. X-ray photoelectron spectroscopy (XPS) differentiated between four types of phthalocyanine nitrogen atoms; binding energies were ca. 399.8 (N-H), 398.1 (Nmeso), 397.8 (Ncore), and 398.7 eV (N-Zn), respectively. An electrochemical study of these compounds revealed up to five different redox processes in dichloromethane but only three in tetrahydrofuran (THF). The first ring-based oxidation of both metal-free compounds 6a-e and zinc phthalocyanines 7a-e exhibited a near-linear increase in peak anodic potentials, Epa, with the systematic replacement of two nonperipheral dodecyl substituents with one peripheral 4'-ferrocenylbutoxy group. When four 4'-ferrocenylbutoxy groups were substituted on the phthalocyanine macrocycle, aggregation of the first oxidized species was observed. Zinc insertion into metal-free phthalocyanines lowered formal redox potentials. An electrochemical scheme consistent with electrochemical results is provided.

Publication types

  • Case Reports

MeSH terms

  • Humans
  • Indoles*
  • Metallocenes
  • Metals
  • Photoelectron Spectroscopy
  • Zinc*

Substances

  • Indoles
  • Metallocenes
  • Metals
  • Zinc