A comparative characterization study between fungal and bacterial eumelanin pigments

Indian J Microbiol. 2022 Sep;62(3):393-400. doi: 10.1007/s12088-022-01012-1. Epub 2022 Mar 28.

Abstract

Melanins are the most common and the most enigmatic natural pigments in the nature that found in many different taxa group such as bacteria, yeasts, fungi, insects, plants, reptiles, birds and mammals. These biological macromolecules are highly complex cross-linked, heterogeneous biopolymers and composed of polymerized phenolic and/or indolic compounds. Recently, interest in these ubiquitous biopolymers has been increasing considerably in many different areas such as medicine, pharmacology, cosmetics, organic electronic and optoelectronics because of their versatile properties. In this study, four different extracellular eumelanin pigments (two bacterial eumelanins and two fungal eumelanins) were characterized by different spectrometric techniques such as FT-IR, XRD, NMR and UV-vis. In XRD analyzes, purified fungal and bacterial eumelanin pigments were characterized by giving a wide peak at about 22o with an angle of 2θ. Furthermore, in the 1 H NMR spectra of these biopolymers, it was observed that all pigments have signals in both aromatic and aliphatic regions. In addition to these analyzes, nanostructures of these biopolymers were characterized using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Finally, eumelanin pigment producer microorganisms were molecularly characterized. 16 S rDNA and 18 S rDNA sequence analysis results of these microorganisms (Streptomyces fulvissimus MPPS4, Streptomyces xiamenensis MPPS6, Aspergillus niger MPPF16 and Aspergillus terreus MPPF25) were deposited in NCBI GenBank® database with accession number MT825594, MT973972, MW652652 and MW652653 respectively.

Supplementary information: The online version contains supplementary material available at 10.1007/s12088-022-01012-1.

Keywords: 1H NMR; AFM; Eumelanin; FT-IR; SEM; XRD.