Structural relaxation dynamics of colloidal nanotrimers

Phys Rev E. 2022 Jul;106(1-1):014604. doi: 10.1103/PhysRevE.106.014604.

Abstract

By Molecular Dynamics simulation, we investigate the dynamics of isotropic fluids of colloidal nanotrimers whose interactions are described by varying the strength of attractive and repulsive terms of the Mie potential. To provide a consistent comparison between the systems described by different force fields, we determine the phase diagram and critical points of each system, characterize the morphology of high-density liquid phases at the same reduced temperature and density, and finally investigate their long-time relaxation dynamics. In particular, we detect an especially complex dynamics that reveals the existence of slow and fast nanotrimers and the resulting occurrence of non-Gaussianity, which develops at intermediate timescales. Deviations from Gaussianity are temporary and vanish within the timescales of the system's density fluctuations decay, when a Fickian-like diffusion regime is eventually observed.