Multiphase curved boundary condition in lattice Boltzmann method

Phys Rev E. 2022 Jul;106(1-2):015307. doi: 10.1103/PhysRevE.106.015307.

Abstract

The boundary treatment is fundamental for modeling fluid flows especially in the lattice Boltzmann method; the curved boundary conditions effectively improve the accuracy of single-phase simulations with complex-geometry boundaries. However, the conventional curved boundary conditions usually cause dramatic mass leakage or increase when they are directly used for multiphase flow simulations. We find that the principal reason for this is the absence of a nonideal effect in the curved boundary conditions, followed by a calculation error. In this paper, incorporating the nonideal effect into the linear interpolation scheme and compensating for the interpolating error, we propose a multiphase curved boundary condition to treat the wetting boundaries with complex geometries. A series of static and dynamic multiphase simulations with large density ratio verify that the present scheme is accurate and ensures mass conservation.