Koopman-Based MPC With Learned Dynamics: Hierarchical Neural Network Approach

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3630-3639. doi: 10.1109/TNNLS.2022.3194958. Epub 2024 Feb 29.

Abstract

This article presents a data-driven control strategy for nonlinear dynamical systems, enabling the construction of a Koopman-based linear system associated with nonlinear dynamics. The primary idea is to apply the deep learning technique to the Koopman framework for globally linearizing nonlinear dynamics and impose a Koopman-based model predictive control (MPC) approach to stabilize the nonlinear dynamical systems. In this work, we first generalize the Koopman framework to nonlinear control systems, enabling comprehensive linear analysis and control methods to be effective for nonlinear systems. We next present a hierarchical neural network (HNN) approach to deal with the crucial challenge of the finite-dimensional Koopman representation approximation. In particular, a scale-invariant constrained network in the HNN includes four modules, in which a predictor module and a linear module can accurately approximate the finite Koopman eigenfunctions and Koopman operator, respectively, thus forming the lifted linear system. Then, we design the Koopman-based MPC scheme for controlling nonlinear systems with constraints by adopting the modified MPC with a saturation-like function on the lifted linear system. Importantly, the Koopman-based MPC enjoys higher computational efficiency compared to the classical linear MPC and nonlinear MPC methods. Finally, a physical experiment on an overhead crane system is provided to demonstrate the effectiveness of the proposed data-driven control framework.