Molecular markers-based DNA fingerprinting coupled with morphological diversity analysis for prediction of heterotic grouping in sunflower (Helianthus annuus L.)

Front Plant Sci. 2022 Jul 28:13:916845. doi: 10.3389/fpls.2022.916845. eCollection 2022.

Abstract

Cultivated sunflower holds a very narrow genetic base and the efficient utilization of available genetic diversity is very important for a successful breeding program. In the present study, 109 sunflower genotypes were assessed for diversity paneling through a combined approach of morphological and molecular markers analysis. Morphological parameters including days to flower initiation, days to flower completion, plant height, stem curvature, number of leaves per plant, leaf area, head diameter, hundred seed weight, and seed yield per plant were studied. Simple sequence repeats (40 DNA markers) were deployed for diversity profiling. Data were analyzed by both univariate and multivariate statistics. SD and coefficient of variation confirm the presence of significant amounts of genetic variation for all the morphological parameters. Cluster Analysis and Principal Component Analysis further confirm the presence of distinct grouping patterns in the studied material. Cluster analysis of both morphological and molecular analysis revealed that restorer lines tend to group separately from A, B, and open-pollinated lines. Further grouping, at the sub-cluster level, revealed six distinct sub-clusters in each of the two major clusters. In total, 12 genotypes, 6 CMS lines (CMS-HAP-12, CMS-HAP-54, CMS-HAP-56, CMS-HAP-99, CMS-HAP-111, and CMS-HAP-112) and 6 restorer lines (RHP-38, RHP-41, RHP-53, RHP-68, RHP-69, and RHP-71) could be used as potential parents for hybrid development. As genotypes of similar genetic backgrounds tend to group closer, it is deduced that one genotype with the highest seed yield per plant could be used for further hybrid breeding programs in sunflowers.

Keywords: SSR; heterosis; morphological; multivariate; sunflower; yield.