Synthesis and characterization of Ag2O, CoFe2O4, GO, and their ternary composite for antibacterial activity

Environ Sci Pollut Res Int. 2023 Jan;30(2):4079-4093. doi: 10.1007/s11356-022-22516-9. Epub 2022 Aug 13.

Abstract

Currently, nanomaterials with exceptional antibacterial activity have become an emerging domain in research. The optimization of nanomaterials against infection causing agents is the next step in dealing with the present-day problem of antibiotics. In this research work, Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO are prepared by chemical methods. Ag2O was prepared by co-precipitation method, while solvothermal technique was utilized for the synthesis of CoFe2O4. The ternary nanocomposite was synthesized by a simple in situ reduction using a two-step approach. The structural and morphological properties were studied by UV-Vis spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). From the X-ray diffraction analysis, the crystallite size is found to be 14 nm, 5 nm, and 6 nm for Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO respectively. The synthesized nanomaterials were investigated for antibacterial activities against gram-positive strain Staphylococcus aureus (S. aureus) and gram-negative strain Escherichia coli (E. coli) using Agar well diffusion method. Ag2O and CoFe2O4 showed zones of inhibition (ZOI) of 13 mm and 11 mm against gram positive bacteria while 12 mm against gram negative bacteria respectively, while ternary nanocomposite showed 14 mm and 13 mm of ZOI. The antibacterial activity of nanomaterials showed a gradual increment with an increase in the concentration of the materials. Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO showed minimum inhibitory concentration (MIC) values of 4.5, 6.5, and 4.5 μg/mL for S. aureus and 6.5, 7.2, and 4.8 μg/mL for E. coli respectively. Minimum bactericidal concentrations were found to be same as the MIC values. Additionally, a time-kill curve analysis was performed and for ternary nanocomposite; the killing response was most effective as the complete killing was achieved at 3 h of incubation at 3-MIC (9.75 μg/mL). These results demonstrate that all the nanomaterials, as a kind of antibacterial material, have a great potential for a wide range of biomedical applications.

Keywords: Antibacterial; Cobalt ferrite; GO; Silver oxide; Ternary nanocomposite.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Escherichia coli
  • Graphite* / chemistry
  • Metal Nanoparticles* / chemistry
  • Microbial Sensitivity Tests
  • Staphylococcus aureus

Substances

  • graphene oxide
  • Anti-Bacterial Agents
  • Graphite