Membrane-wrapped nanoparticles for photothermal cancer therapy

Nano Converg. 2022 Aug 12;9(1):37. doi: 10.1186/s40580-022-00328-4.

Abstract

Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation.

Keywords: Biomimetic; Biomimicry; Multimodal therapy; Nanomedicine; Oncology; Phototherapy; Targeting.

Publication types

  • Review