Drug discovery in spinal cord injury-induced osteoporosis: a text mining-based study

Ann Transl Med. 2022 Jul;10(13):733. doi: 10.21037/atm-21-6900.

Abstract

Background: Spinal cord injury (SCI) and osteoporosis (OP) are common diseases in spine surgery, and OP could be the complication of SCI. However, SCI-induced OP is a complex pathologic process and drug discovery is limited, which restricts the study in the mechanism and treatment of the disease. This study aims to identify the genes and molecular pathways related to SCI-induced OP through computational tools and public datasets, and to explore drug targeting therapy, ultimately preventing the occurrence of OP after SCI.

Methods: In this study, common genes related to SCI and OP were obtained by text mining, then which conducted the functional analysis. Protein-protein interaction (PPI) networks were constructed by STRING online and Cytoscape software. Finally, core genes and potential drugs were performed after undergoing drug-gene interaction analysis which also completed functional analysis.

Results: A total of 371 genes common to 'SCI' and 'OP' were identified by text mining. After functional analysis, 207 significant genes were screened out. Subsequently, PPI analysis yielded 23 genes targetable by 13 drugs which were the candidate to treat SCI-induced OP.

Conclusions: Taken together, siltuximab, olokizumab, clazakizumab and BAN2401 were first discovered to become the potential drugs for the treatment of SCI-induced OP. Drug discovery using text mining and pathway analysis is a significant way to investigate the pathomechanism of the disease while exploring existing drugs to treat the disease.

Keywords: Drug discovery; osteoporosis (OP); spinal cord injury (SCI); text mining.