Data Collection from Buried Sensor Nodes by Means of an Unmanned Aerial Vehicle

Sensors (Basel). 2022 Aug 8;22(15):5926. doi: 10.3390/s22155926.

Abstract

The development of Wireless Underground Sensor Networks (WUSNs) is a recent research axis based on sensor nodes buried a few dozen centimeters deep. The communication ranges are, however, highly reduced due to the high attenuation of electromagnetic waves in soil, leading to issues of data collection. This paper proposes to embed a data collector on an Unmanned Aerial Vehicle (UAV) coming close to each buried sensor node. The whole system was developed (sensor nodes, data collector, gateway) and experimentations were carried out in real conditions. In hovering mode, the measurements on the RSSI levels with respect to the position of the UAV highlight the interest in maintaining a high altitude when the UAV is far from the node. In dynamic mode, the experimental results demonstrate the feasibility of carrying out the data collection task while the UAV is moving. The speed of the UAV has, however, to be adapted to the required time to collect the data. In the case of numerous buried sensor nodes, evolutionary algorithms are implemented to plan the trajectory of the UAV optimally. To the best of our knowledge, this paper is the first one that reports experiment results combining WUSN and UAV technologies.

Keywords: Internet of Underground Things; LoRa; Unmanned Aerial Vehicle; Wireless Underground Sensor Networks; ZigBee; environmental monitoring; evolutionary algorithms.