Energy Harvesting for TDS-OFDM in NOMA-Based Underwater Communication Systems

Sensors (Basel). 2022 Aug 1;22(15):5751. doi: 10.3390/s22155751.

Abstract

Non-orthogonal multiple access (NOMA) is considered a promising multiple access technique for fifth generation (5G) mobile networks and tactical internet due to its high spectral efficiency. Thanks to the high spectral efficiency of NOMA, it can be a strong candidate suitable for the limited channel bandwidth of underwater acoustic communication. The NOMA transmitter is employing superposition coding (SC). The NOMA receiver is based on the successive interference cancellation (SIC) technique. The multicarrier NOMA adopts orthogonal frequency division multiplexing (OFDM) as a multicarrier modulation (MCM) technique; however, conventional cyclic prefix OFDM (CP-OFDM) and zero padding (ZP-OFDM) have inefficient spectral efficiency. Thanks to efficient synchronization and high energy-spectral efficiency of the time-division synchronization OFDM (TDS-OFDM), it is a significant attractive candidate for underwater multicarrier communication. However, wasting the power transmission of long guard intervals in the battery-based underwater communication is represented as one of the TDS-OFDM main drawbacks. Harvesting energy and improving the energy efficiency of acoustic-based TDS-OFDM-NOMA represent high achievement goal battery recharging challenges due to the ocean environment. This paper proposes time switching simultaneous wireless information and power transfer (TS-SWIPT) to harvest the energy of transmitted power over the guard interval in the TDS-OFDM-NOMA scheme. The proposed energy harvested scheme harvests the energy from the wasted power in the long guard interval and improves the energy efficiency of the TDS-OFDM multicarrier scheme. This study demonstrates the superiority of the proposed TDS-OFDM-NOMA over the underwater acoustic channel by revealing high energy efficiency, high spectral efficiency, better bit error rate performance, and high system data throughput.

Keywords: NOMA; TDS-OFDM; energy efficiency; energy harvesting; underwater acoustic communication.