Chemical Vapor Deposition of Uniform and Large-Domain Molybdenum Disulfide Crystals on Glass/Al2O3 Substrates

Nanomaterials (Basel). 2022 Aug 7;12(15):2719. doi: 10.3390/nano12152719.

Abstract

Two-dimensional molybdenum disulfide (MoS2) has attracted significant attention for next-generation electronics, flexible devices, and optical applications. Chemical vapor deposition is the most promising route for the production of large-scale, high-quality MoS2 films. Recently, the chemical vapor deposition of MoS2 films on soda-lime glass has attracted great attention due to its low cost, fast growth, and large domain size. Typically, a piece of Mo foil or graphite needs to be used as a buffer layer between the glass substrates and the CVD system to prevent the glass substrates from being fragmented. In this study, a novel method was developed for synthesizing MoS2 on glass substrates. Inert Al2O3 was used as the buffer layer and high-quality, uniform, triangular monolayer MoS2 crystals with domain sizes larger than 400 μm were obtained. To demonstrate the advantages of glass/Al2O3 substrates, a direct comparison of CVD MoS2 on glass/Mo and glass/Al2O3 substrates was performed. When Mo foil was used as the buffer layer, serried small bilayer islands and bright core centers could be observed on the MoS2 domains at the center and edges of glass substrates. As a control, uniform MoS2 crystals were obtained when Al2O3 was used as the buffer layer, both at the center and the edge of glass substrates. Raman and PL spectra were further characterized to show the merit of glass/Al2O3 substrates. In addition, the thickness of MoS2 domains was confirmed by an atomic force microscope and the uniformity of MoS2 domains was verified by Raman mapping. This work provides a novel method for CVD MoS2 growth on soda-lime glass and is helpful in realizing commercial applications of MoS2.

Keywords: MoS2; chemical vapor deposition; glass; substrate.