Transformed Filaments by Oxygen Plasma Treatment and Improved Resistance State

Nanomaterials (Basel). 2022 Aug 7;12(15):2716. doi: 10.3390/nano12152716.

Abstract

The simple structure and operation method of resistive random-access memory (RRAM) has attracted attention as next-generation memory. However, as it is greatly influenced by the movement of oxygen atoms during switching, it is essential to minimize the damage and adjust the defects. Here, we fabricated an ITO/SnOX/TaN device and investigated the performance improvement with the treatment of O2 plasma. Firstly, the change in the forming curve was noticeable, and the defect adjustment was carried out effectively. By comparing the I-V curves, it was confirmed that the resistance increased and the current was successfully suppressed, making it suitable for use as a low-power consumption device. Retention of more than 104 s at room temperature was measured, and an endurance of 200 cycles was performed. The filaments' configuration was revealed through the depth profile of X-ray photoelectron spectroscopy (XPS) and modeled to be visually observed. The work with plasma treatment provides a variety of applications to the neuromorphic system that require a low-current level.

Keywords: RRAM; XPS; conductive filaments; low power consumption; oxygen plasma treatment.