Fullerene Derivatives for Drug Delivery against COVID-19: A Molecular Dynamics Investigation of Dendro[60]fullerene as Nanocarrier of Molnupiravir

Nanomaterials (Basel). 2022 Aug 7;12(15):2711. doi: 10.3390/nano12152711.

Abstract

In this paper, a theoretical investigation is made regarding the possibility of using a water-soluble derivative of C60 as a drug delivery agent for treating Coronavirus disease 2019 (COVID-19). Molnupiravir is chosen as the transporting pharmaceutical compound since it has already proved to be very helpful in saving lives in case of hospitalization. According to the proposed formulation, a carboxyfullerene known as dendro[60]fullerene is externally connected with two molnupiravir molecules. Two properly formed nitrogen single bonds (N-N) are used as linkers between the dendro[60]fullerene and the two molnupiravir molecules to create the final form of the C60 derivate/molnupiravir conjugate. The energetics of the developed molecular system and its interaction with water and n-octanol are extensively studied via classical molecular dynamics (MD) using the COMPASS II force field. To study the interactions with water and n-octanol, an appropriate periodic amorphous unit cell is created that contains a single C60 derivative/molnupiravir system surrounded by numerous solvent molecules and simulated via MD in room conditions. In addition, the corresponding solvation-free energies of the investigated drug delivery system are computed and set in contrast with the corresponding properties of the water-soluble dendro[60]fullerene, to test its solubility capabilities.

Keywords: COVID-19; drug delivery; fullerene; molecular dynamics; molnupiravir; solvation free energy.

Grants and funding

This research received no external funding.