Impact of Tea Processing on Tryptophan, Melatonin, Phenolic and Flavonoid Contents in Mulberry (Morus alba L.) Leaves: Quantitative Analysis by LC-MS/MS

Molecules. 2022 Aug 5;27(15):4979. doi: 10.3390/molecules27154979.

Abstract

Mulberry (Morus alba L.) leaves from two cultivars, Yai-Burirum (YB) and Khunphai (KP), were prepared into green tea (GT) and black tea (BT). Compared to fresh leaf (FL) extract, GT and BT extracts were evaluated for their total phenolic and total flavonoid contents. Total phenolic content (TPCs) in all samples ranged between 129.93 and 390.89 mg GAE/g extract. The processing of tea decreased the levels of TPC when compared to FL extracts in both cultivars. The total flavonoid content (TFCs) in all samples was found in the range of 10.15-39.09 mg QE/g extract and TFCs in GT and BT extracts were higher than FL extracts. The change in tryptophan, melatonin, phenolic and flavonoid contents was investigated by liquid chromatography-mass spectroscopy (LC-MS). The results exhibited that tryptophan contents in all samples were detected in the range 29.54-673.72 µg/g extract. Both GT and BT extracts increased tryptophan content compared to FL extracts. BT extracts presented the highest amounts of tryptophan among others in both cultivars. Phenolic compounds were found in mulberry leaf extracts, including gallic acid, caffeic acid, gentisic acid, protocatechuic acid and chlorogenic acid. Chlorogenic acid presented the highest amount in all samples. Almost all phenolic acids were increased in the processed tea extracts except chlorogenic acid. Rutin was the only flavonoid that was detected in all extracts in the range 109.48-1009.75 mg/g extract. The change in phenolic and flavonoid compounds during tea processing resulted in the change in antioxidant capacities of the GT and BT extracts. All extracts presented acetylcholinesterase enzyme (AChE) inhibitory activity with IC50 in the range 146.53-165.24 µg/mL. The processing of tea slightly increased the AChE inhibitory effect of GT and BT extracts. In conclusion, processed tea from mulberry leaves could serve as a new alternative functional food for health-concerned consumers because it could be a promising source of tryptophan, phenolics and flavonoids. Moreover, the tea extracts also had antioxidative and anti-AChE activities.

Keywords: flavonoids; melatonin; mulberry leaf; phenolics; tea processing; tryptophan.

MeSH terms

  • Acetylcholinesterase
  • Antioxidants / pharmacology
  • Chlorogenic Acid / analysis
  • Chromatography, Liquid
  • Flavonoids / pharmacology
  • Melatonin* / analysis
  • Morus* / chemistry
  • Phenols / chemistry
  • Plant Extracts / chemistry
  • Plant Leaves* / chemistry
  • Tandem Mass Spectrometry
  • Tea
  • Tryptophan

Substances

  • Antioxidants
  • Flavonoids
  • Phenols
  • Plant Extracts
  • Tea
  • Chlorogenic Acid
  • Tryptophan
  • Acetylcholinesterase
  • Melatonin