Estimation of Bond Strength and Effective Bond Length for the Double Strap Joint between Carbon Fiber Reinforced Polymer (CFRP) Plate and Corroded Steel Plate

Polymers (Basel). 2022 Jul 29;14(15):3069. doi: 10.3390/polym14153069.

Abstract

In this paper, we examine the development of the estimation models of bond strength and effective bond length for a double strap joint between carbon fiber reinforced polymer (CFRP) plate and corroded steel plate. The experimental study on the bond behavior between CFRP plate and corroded steel plate is summarized first and the analytical interfacial bond-slip model for CFRP plate externally bonded to corroded steel plate is proposed. Based on the theoretical stress analysis for the CFRP plate-corroded steel plate double-lap joint, the piecewise expressions of the interfacial shear stress and the normal peel stress of the interface between CFRP plate and corroded steel plate were established. The estimation models of the bond strength and the effective bond length for the double strap joint between the CFRP plate and the corroded steel plate were consequently developed on the basis of interfacial stress distribution equations and the stress boundary conditions. The comparison between the predicted and experimental results indicated that the proposed models could be adopted to predict the bond strength and effective bond length for the CFRP plates externally bonded to corroded steel substrates with reasonable accuracy. The proposed estimation models are expected to provide meaningful references and essential data for the reliable application of CFRP strengthening system to the performance improvement of corroded steel structures.

Keywords: bond strength; carbon fiber reinforced polymer; corroded steel plate; effective bond length; estimation model.