Sensitive Non-Enzymatic Glucose Electrochemical Sensor Based on Electrochemically Synthesized PANI/Bimetallic Oxide Composite

Polymers (Basel). 2022 Jul 27;14(15):3047. doi: 10.3390/polym14153047.

Abstract

The development of a sensitive glucose monitoring system is highly important to protect human lives as high blood-glucose level-related diseases continue to rise globally. In this study, a glucose sensor based on polyaniline-bimetallic oxide (PANI-MnBaO2) was reported. PANI-MnBaO2 was electrochemically synthesized on the glassy carbon electrode (GCE) surface. The as-prepared PANI-MnBaO2 was characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Glucose sensing on PANI-MnBaO2 is based on the electrocatalytic oxidation of glucose to the glucolactone, which gives oxidation current. The oxidation potential for glucose was 0.83 V, with a limit of detection of 0.06 µM in the linear and in the concentration range of 0.05 µM-1.6 mM. The generated current densities displayed excellent stability in terms of repeatability and reproducibility with fast response. The development of a sensitive glucose sensor as obtained in the current study would ensure human health safety and protection through timely and accurate glucose detection and monitoring.

Keywords: PANI-MnBaO2; conducting polymer composite; cyclic voltammetry; electrochemical sensor; glucose sensor; linear sweep voltammetry.