Legume Seed Protein Digestibility as Influenced by Traditional and Emerging Physical Processing Technologies

Foods. 2022 Aug 2;11(15):2299. doi: 10.3390/foods11152299.

Abstract

The increased consumption of legume seeds as a strategy for enhancing food security, reducing malnutrition, and improving health outcomes on a global scale remains an ongoing subject of profound research interest. Legume seed proteins are rich in their dietary protein contents. However, coexisting with these proteins in the seed matrix are other components that inhibit protein digestibility. Thus, improving access to legume proteins often depends on the neutralisation of these inhibitors, which are collectively described as antinutrients or antinutritional factors. The determination of protein quality, which typically involves evaluating protein digestibility and essential amino acid content, is assessed using various methods, such as in vitro simulated gastrointestinal digestibility, protein digestibility-corrected amino acid score (IV-PDCAAS), and digestible indispensable amino acid score (DIAAS). Since most edible legumes are mainly available in their processed forms, an interrogation of these processing methods, which could be traditional (e.g., cooking, milling, extrusion, germination, and fermentation) or based on emerging technologies (e.g., high-pressure processing (HPP), ultrasound, irradiation, pulsed electric field (PEF), and microwave), is not only critical but also necessary given the capacity of processing methods to influence protein digestibility. Therefore, this timely and important review discusses how each of these processing methods affects legume seed digestibility, examines the potential for improvements, highlights the challenges posed by antinutritional factors, and suggests areas of focus for future research.

Keywords: DIAAS; PDCAAS; emerging food processing technology; food processing; in vitro digestibility; legume proteins.

Publication types

  • Review