High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects

Nat Biotechnol. 2023 Jan;41(1):108-119. doi: 10.1038/s41587-022-01419-7. Epub 2022 Aug 11.

Abstract

CRISPR-Cas13 systems have recently been used for targeted RNA degradation in various organisms. However, collateral degradation of bystander RNAs has limited their in vivo applications. Here, we design a dual-fluorescence reporter system for detecting collateral effects and screening Cas13 variants in mammalian cells. Among over 200 engineered variants, several Cas13 variants including Cas13d and Cas13X exhibit efficient on-target activity but markedly reduced collateral activity. Furthermore, transcriptome-wide off-targets and cell growth arrest induced by Cas13 are absent for these variants. High-fidelity Cas13 variants show similar RNA knockdown activity to wild-type Cas13 but no detectable collateral damage in transgenic mice or adeno-associated-virus-mediated somatic cell targeting. Thus, high-fidelity Cas13 variants with minimal collateral effects are now available for targeted degradation of RNAs in basic research and therapeutic applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CRISPR-Cas Systems* / genetics
  • Mammals / genetics
  • Mice
  • Mice, Transgenic
  • RNA Stability / genetics
  • RNA* / genetics
  • Transcriptome

Substances

  • RNA