A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain

Appl Microbiol Biotechnol. 2022 Sep;106(18):6059-6075. doi: 10.1007/s00253-022-12117-4. Epub 2022 Aug 11.

Abstract

One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as β-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.

Keywords: Carbohydrate-binding module (CBM); Endoglucanase; GH9; Processivity; Saccharification; Sugarcane bagasse.

MeSH terms

  • Bacillus licheniformis* / genetics
  • Bacillus licheniformis* / metabolism
  • Cellulase* / metabolism
  • Cellulose / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Glycoside Hydrolases / metabolism
  • Hydrolysis
  • Saccharum* / metabolism
  • Sugars

Substances

  • Sugars
  • Cellulose
  • Glycoside Hydrolases
  • Cellulase