Tumor-derived miR-130b-3p induces cancer-associated fibroblast activation by targeting SPIN90 in luminal A breast cancer

Oncogenesis. 2022 Aug 10;11(1):47. doi: 10.1038/s41389-022-00422-6.

Abstract

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) interact closely with cancer cells to promote tumor development. Downregulation of SPIN90 in CAFs has been reported to facilitate breast cancer progression, but the underlying mechanism has not been elucidated. Here, we demonstrate that miR-130b-3p directly downregulates SPIN90 in stromal fibroblasts, leading to their differentiation into CAFs. As the decrease of SPIN90 in CAFs was shown to be more prominent in estrogen receptor (ER)-positive breast tumors in this study, miR-130b-3p was selected by bioinformatics analysis of data from patients with ER-positive breast cancer. Ectopic expression of miR-130b-3p in fibroblasts accelerated their differentiation to CAFs that promote cancer cell motility; this was associated with SPIN90 downregulation. We also found that miR-130b-3p was generated in luminal A-type cancer cells and activated fibroblasts after being secreted via exosomes from cancer cells. Finally, miR-130b-3p increased in SPIN90-downregulated tumor stroma of luminal A breast cancer patients and MCF7 cell-xenograft model mice. Our data demonstrate that miR-130b-3p is a key modulator that downregulates SPIN90 in breast CAFs. The inverse correlation between miR-130b-3p and SPIN90 in tumor stroma suggests that the miR-130b-3p/SPIN90 axis is clinically significant for CAF activation during breast cancer progression.