Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode (Meloidogyne incognita) infection

3 Biotech. 2022 Sep;12(9):211. doi: 10.1007/s13205-022-03282-4. Epub 2022 Aug 7.

Abstract

Gossypium hirsutum L. represents the best cotton species for fiber production, thus computing the largest cultivated area worldwide. Meloidogyne incognita is a root-knot nematode (RKN) and one of the most important species of Meloidogyne genus, which has a wide host range, including cotton plants. Phytonematode infestations can only be partially controlled by conventional agricultural methods, therefore, more effective strategies to improve cotton resistance to M. incognita disease are highly desirable. The present study employed functional genomics to validate the involvement of two previously identified candidate genes, encoding dirigent protein 4-GhDIR4 and peroxiredoxin-2-GhPRXIIB, in cotton defense against M. incognita. Transgenic A. thaliana plant lines overexpressing GhDIR4 and GhPRXIIB genes were generated and displayed significantly improved resistance against M. incognita infection in terms of female nematode abundance in the roots when compared to wild-type control plants. For our best target-gene GhDIR4, an in-silico functional analysis, including multiple sequence alignment, phylogenetic relationship, and search for specific protein motifs unveiled potential orthologs in other relevant crop plants, including monocots and dicots. Our findings provide valuable information for further understanding the roles of GhDIR and GhPRXIIB genes in cotton defense response against RKN nematode.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-022-03282-4.

Keywords: Gene overexpression; Gossypium hirsutum; Plant defense response; Plant-pathogen interaction; Transgenic plants.