Microbulbifer okhotskensis sp. nov., isolated from a deep bottom sediment of the Okhotsk Sea

Arch Microbiol. 2022 Aug 10;204(9):548. doi: 10.1007/s00203-022-03161-9.

Abstract

A Gram-negative, aerobic, non-motile bacterium КMM 9862T was isolated from a deep bottom sediment sample obtained from the Okhotsk Sea, Russia. Based on the 16S rRNA gene and whole genome sequences analyses the novel strain КMM 9862T fell into the genus Microbulbifer (class Gammaproteobacteria) sharing the highest 16S rRNA gene sequence similarities of 97.4% to Microbulbifer echini AM134T and Microbulbifer epialgicus F-104T, 97.3% to Microbulbifer pacificus SPO729T, 97.1% to Microbulbifer variabilis ATCC 700307T, and similarity values of < 97.1% to other recognized Microbulbifer species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 9862T and M. variabilis ATCC 700307T and M. thermotolerans DSM 19189T were 80.34 and 77.72%, and 20.2 and 19.0%, respectively. Strain КMM 9862T contained Q-8 as the predominant ubiquinone and C16:0, C16:1 ω7c, C12:0, and C10:0 3-OH as the major fatty acids. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, an unidentified aminolipid, two unidentified phospholipids, phosphatidic acid, and an unidentified lipid. The DNA G+C content of 49.8% was calculated from the genome sequence. On the basis of the phylogenetic evidence and distinctive phenotypic characteristics, the marine bacterium KMM 9862T is proposed to be classified as a novel species Microbulbifer okhotskensis sp. nov. The type strain of the species is strain KMM 9862T (= KACC 22804T).

Keywords: Bottom sediments; Gammaproteobacteria; Marine bacteria; Microbulbifer okhotskensis sp. Nov.

MeSH terms

  • Alteromonadaceae* / genetics
  • Bacterial Typing Techniques
  • DNA, Bacterial / genetics
  • Fatty Acids / analysis
  • Geologic Sediments* / microbiology
  • Phospholipids / analysis
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S