Rational construction and understanding the effect of metal cation substitution of three novel ternary Zn-Co-Ni-LDHs from 2D to 3D and its enhanced adsorption properties for MO

Environ Sci Pollut Res Int. 2023 Jan;30(2):3383-3401. doi: 10.1007/s11356-022-22303-6. Epub 2022 Aug 10.

Abstract

The layered double hydroxides (LDHs) have attracted attention in the water treatment field. In this paper, three novel ternary Zn-Co-Ni-LDH adsorbents were prepared successfully through rational construction from 2D to 3D using triethanolamine (TEA) as an alkali source and a structural controlling reagent by hydrothermal technique. Samples were characterized by the SEM, XRD, XPS, FTIR, BET, solid-state UV/vis spectra, and TG. Three Zn-Co-Ni-LDHs exhibited higher crystallinity and surface area which were beneficial to the adsorption for methyl orange (MO). The maximum adsorption capacity of three Zn-Co-Ni-LDH adsorbents can even reach as high as 1871.65 mg·g-1, 1799.56 mg·g-1, and 1646.44 mg·g-1 for MO, respectively, which surpass those of most previously reported LDH-based adsorbents. The pseudo-second-order kinetic equation fitted the kinetic data of adsorption, while the equilibrium adsorption isotherm data followed the Langmuir model. The adsorption mechanism, electrochemical, and the antibacterial properties of three Zn-Co-Ni-LDHs were also discussed. This results not only demonstrates that three Zn-Co-Ni-LDHs are practical interest as an efficient adsorbent for the removal of MO from dye waste water, but also provides a strategy for the rational design through three ternary Zn-Co-Ni-LDHs from 2D to 3D.

Keywords: Adsorption; Antibacterial; Layered double hydroxide (LDHs); Mechanism analysis; Methyl orange; Zn-Co–Ni-LDHs.

MeSH terms

  • Adsorption
  • Hydroxides / chemistry
  • Metals
  • Water Pollutants, Chemical* / analysis
  • Zinc* / chemistry

Substances

  • methyl orange
  • Zinc
  • Metals
  • Hydroxides
  • Water Pollutants, Chemical