HaloChIP-seq for Antibody-Independent Mapping of Mouse Transcription Factor Cistromes in vivo

Bio Protoc. 2022 Jul 5;12(13):e4460. doi: 10.21769/BioProtoc.4460.

Abstract

Chromatin immunoprecipitation (ChIP) maps, on a genome-wide scale, transcription factor binding sites, and the distribution of other chromatin-associated proteins and their modifications. As such, it provides valuable insights into mechanisms of gene regulation. However, successful ChIP experiments are dependent on the availability of a high-quality antibody against the target of interest. Using antibodies with poor sensitivity and specificity can yield misleading results. This can be partly circumvented by using epitope-tagged systems ( e.g. , HA, Myc, His), but these approaches are still antibody-dependent. HaloTag ® is a modified dehalogenase enzyme, which covalently binds synthetic ligands. This system can be used for imaging and purification of HaloTag ® fusion proteins, and has been used for ChIP in vitro . Here, we present a protocol for using the HaloTag ® system for ChIP in vivo , to map, with sensitivity and specificity, the cistrome of a dynamic mouse transcription factor expressed at its endogenous locus. Graphical abstract.

Keywords: ChIP; Fusion protein; HaloTag ®; NR1D1; Nuclear receptor; Tag.