Kindlins as modulators of breast cancer progression

J Breast Cancer Res. 2021;1(2):20-29.

Abstract

Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.

Keywords: Breast cancer; FERM domains; FERMT; Integrins; Kindlins; Talin.