Dual-wavelength volumetric stereolithography of multilevel microfluidic devices

Biomicrofluidics. 2022 Aug 3;16(4):044106. doi: 10.1063/5.0094721. eCollection 2022 Jul.

Abstract

Microfluidic devices are typically fabricated in an expensive, multistep process (e.g., photolithography, etching, and bonding). Additive manufacturing (AM) has emerged as a revolutionary technology for simple and inexpensive fabrication of monolithic structures-enabling microfluidic designs that are challenging, if not impossible, to make with existing fabrication techniques. Here, we introduce volumetric stereolithography (vSLA), an AM method in which polymerization is constrained to specific heights within a resin vat, allowing layer-by-layer fabrication without a moving platform. vSLA uses an existing dual-wavelength chemistry that polymerizes under blue light (λ = 458 nm) and inhibits polymerization under UV light (λ = 365 nm). We apply vSLA to fabricate microfluidic channels with different spatial and vertical geometries in less than 10 min. Channel heights ranged from 400 μm to 1 mm and could be controlled with an optical dose, which is a function of blue and UV light intensities and exposure time. Oxygen in the resin was found to significantly increase the amount of dose required for curing (i.e., polymerization to a gelled state), and we recommend that an inert vSLA system is used for rapid and reproducible microfluidic fabrication. Furthermore, we recommend polymerizing far beyond the gel point to form more rigid structures that are less susceptible to damage during post-processing, which can be done by simultaneously increasing the blue and UV light absorbance of the resin with light intensities. We believe that vSLA can simplify the fabrication of complex multilevel microfluidic devices, extending microfluidic innovation and availability to a broader community.