Mnsod1 promotes the development of Pleurotus ostreatus and enhances the tolerance of mycelia to heat stress

Microb Cell Fact. 2022 Aug 8;21(1):155. doi: 10.1186/s12934-022-01878-2.

Abstract

Background: Superoxide dismutases (SODs, EC 1.15.1.1) are defense proteins that can be used as sweepers to clear reactive oxygen species (ROS). They have been widely studied in the plant. Intensive research demonstrates that SOD plays an essential role in plants. However, in Pleurotus ostreatus, the function and regulatory pathway of SOD in the growth and development and the abiotic stress response have not been clear.

Results: In this study, three MnSOD-encoding genes of the P. ostreatus CCMSSC00389 strain were cloned and identified. Mnsod1, Mnsod2, and Mnsod3 were interrupted by 3, 7, and 2 introns, and encoded proteins of 204, 220, and 344 amino acids, respectively. By comparing the relative expression of three MnSOD-encoding genes in mycelia, the results showed that the gene with the highest primary expression was Mnsod1. Subsequently, the function of P. ostreatus Mnsod1 was explored by overexpression (OE) and RNA interference (RNAi). The results showed that during the growth and development of P. ostreatus, MnSOD1 protein increased gradually from mycelia to the fruiting body, but decreased in spores. The change of Mnsod1 transcription level was not consistent with the changing trend of MnSOD1 protein. Further studies showed that during primordia formation, the expression of Mnsod1 gradually increased, reaching a peak at 48 h, and the transcription level was 2.05-folds compared to control. H2O2 content progressively accumulated during the formation of primordia, and its change trend was similar to that of Mnsod1 transcription. OE-Mnsod1-1 and OE-Mnsod1-21 strains accelerated the formation of primordia. The results suggested that Mnsod1 may participate in the formation rate of P. ostreatus primordium by regulating the signal molecule H2O2. In addition, OE-Mnsod1-1 and OE-Mnsod1-21 strains shortened the mycelial recovery time after heat stress and improved the tolerance of the strains to 2.5 mM and 5 mM H2O2, which showed that Mnsod1 was involved in the response of P. ostreatus mycelium to heat stress.

Conclusions: This study indicates that Mnsod1 plays an active role in the formation of P. ostreatus primordia and the response to abiotic stress.

Keywords: Development; Heat stress; Manganese superoxide dismutase; Overexpression; Pleurotus ostreatus; RNA interference.

MeSH terms

  • Heat-Shock Response
  • Hydrogen Peroxide / metabolism
  • Mycelium / genetics
  • Pleurotus*
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism

Substances

  • Hydrogen Peroxide
  • Superoxide Dismutase