Dilute lattice doping of 64Cu into 2D-nanoplates: its impact on radio-labeling efficiency and stability for target selective PET imaging

J Mater Chem B. 2022 Nov 23;10(45):9389-9399. doi: 10.1039/d2tb01165d.

Abstract

A quintinite nanoplate (64Cu-QT-NP) isomorphically substituted with 64Cu, as the positron emission tomography (PET) imaging material, was prepared via two-step processes. A 64Cu labeling efficiency of 99% was realized, for the first time, by immobilizing the 64Cu radioisotope directly in the octahedral site of the 2-dimensional (2D) quintinite lattice. Furthermore, the 64Cu labeling stability of 64Cu-QT-NPs was also achieved to be more than ∼99% in various solutions such as saline, phosphate-buffered saline (PBS), and other biological media (mouse and human serums). In an in vivo xenograft mouse model, the passive targeting behavior of 64Cu-QT-NPs into tumor tissue based on the enhanced permeability and retention (EPR) effect was also demonstrated by parenteral administration, and successfully visualized using a PET scanner. For enhancing the tumor tissue selectivity, bovine serum albumin (BSA) was coated on 64Cu-QT-NPs to form 64Cu-QT-NPs/BSA, resulting in better colloidal stability and longer blood circulation time, which was eventually evidenced by the 2-fold higher tumor uptake rate when intravenousely injected in an animal model. It is, therefore, concluded that the present 64Cu-QT-NPs/BSA with tumor tissue selectivity could be an advanced nano-device for radio-imaging and diagnosis as well.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Mice
  • Neoplasms* / diagnostic imaging
  • Positron-Emission Tomography* / methods
  • Serum Albumin, Bovine

Substances

  • Serum Albumin, Bovine