Regulating the electronic structure of MoO2/Mo2C/C by heterostructure and oxygen vacancies for boosting lithium storage kinetics

Dalton Trans. 2022 Aug 23;51(33):12620-12629. doi: 10.1039/d2dt01917e.

Abstract

The electronic structure regulation of electrode materials can improve the ion/electron kinetics, which is beneficial to the cyclic performance and rate capability for lithium ion batteries (LIBs). Herein, we propose a facile strategy to achieve a MoO2/Mo2C/C heterostructure with abundant oxygen vacancies. Density functional theory calculations indicate that the heterostructure of MoO2/Mo2C/C can significantly promote the Li+/charge transfer and reduce the Li adsorption energy, and the abundant oxygen vacancies in MoO2/Mo2C/C can improve the intrinsic electronic conductivity and reduce the Li+ diffusion barrier. Benefiting from the multiscale coordinated regulation, the obtained MoO2/Mo2C/C film exhibits outstanding high rate capability (454.7 mA h g-1 at 5 A g-1) and remarkable cyclic performance (retaining 569 mA h g-1 over 1000 cycles at 2 A g-1). The insightful findings in this study can shed light on the behavior of the electron/ion structure regulation by the heterostructure and oxygen vacancies, which can guide future studies on designing other electrode materials with high-performance lithium-ion storage.