Second-Generation Escherichia coli SuptoxR Strains for High-Level Recombinant Membrane Protein Production

ACS Synth Biol. 2022 Aug 19;11(8):2599-2609. doi: 10.1021/acssynbio.1c00598. Epub 2022 Aug 3.

Abstract

Escherichia coli is one of the most widely utilized hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently engineered a specialized E. coli strain for enhanced recombinant MP production, termed SuptoxR. By appropriately co-expressing the effector gene rraA, SuptoxR can suppress the high toxicity, which is frequently observed during the MP-overexpression process, and, at the same time, enhance significantly the cellular accumulation of membrane-incorporated and properly folded recombinant MP. The combination of these two beneficial effects results in dramatically enhanced volumetric yields for various prokaryotic and eukaryotic MPs. Here, we engineered second-generation SuptoxR strains with further improved properties, so that they can achieve even higher levels of recombinant MP production. We searched for naturally occurring RraA variants with similar or improved MP toxicity-suppressing and production-promoting effects to that of the native E. coli RraA of the original SuptoxR strain. We found that the RraA proteins from Proteus mirabilis and Providencia stuartii can be even more potent enhancers of MP productivity than the E. coli RraA. By exploiting these two newly identified RraAs, we constructed two second-generation SuptoxR strains, termed SuptoxR2.1 and SuptoxR2.2, whose MP-production capabilities often surpass those of the original SuptoxR significantly. SuptoxR2.1 and SuptoxR2.2 are expected to become widely useful expression hosts for recombinant MP production in bacteria.

Keywords: Escherichia coli; RraA; SuptoxR; membrane protein; recombinant production; toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • Escherichia coli Proteins
  • Membrane Proteins
  • Recombinant Proteins