Balancing the good and the bad: controlling immune-related adverse events versus anti-tumor responses in cancer patients treated with immune checkpoint inhibitors

Immunother Adv. 2022 Apr 8;2(1):ltac008. doi: 10.1093/immadv/ltac008. eCollection 2022.

Abstract

Immune checkpoint inhibitors (ICI) have provided new hope for cancer patients, and in particular for patients with tumors that are immunologically active and classified as hot tumors. These tumors express antigenic and tumor microenvironment (TME) characteristics that make them potential candidates for therapy with checkpoint inhibitors that aim to reactivate the immune response such as anti-PD-1 and anti-CTLA-4. Examples of potentially responsive cancers are, melanoma, non-small cell lung cancer and several other metastatic or unresectable tumors with genetic instability: DNA mismatch repair deficiency (dMMR), microsatellite instability-high (MSI-H), or with a high tumor mutational burden (TMB). Immunotherapy using checkpoint inhibitors is typically associated with adverse events (AEs) that are milder than those with chemotherapy. However, a significant percentage of patients develop short-term immune-related AEs (irAEs) which range from mild (~70%) to severe cases (~13%) that can lead to modifications of the checkpoint inhibitor therapy and in some cases, death. While some studies have investigated immune mechanisms behind the development of irAEs, much more research is needed to understand the mechanisms and to develop interventions that could attenuate severe irAEs, while maintaining the anti-tumor response intact. Moreover, studies to identify biomarkers that can predict the likelihood of a patient developing severe irAEs would be of great clinical importance. Here we discuss some of the clinical ramifications of irAEs, potential immune mechanisms behind their development and studies that have investigated potentially useful biomarkers of irAEs development.

Keywords: T-cells; adverse events; autoimmunity; cancer immunotherapy; checkpoint inhibitors; immune mechanisms; toxicity.

Publication types

  • Review