Numerical simulation of vegetation evolution in compound channels

Environ Sci Pollut Res Int. 2023 Jan;30(1):1595-1610. doi: 10.1007/s11356-022-22209-3. Epub 2022 Aug 2.

Abstract

The study of vegetation evolution is essential for further understanding of biogeographic feedback and ecological restoration. In this paper, a vegetation evolution model based on velocity threshold (scaled by the average flow velocity of the bare bed) was established to simulate the vegetation evolution process in compound channels. In this model, the effect of vegetation on water flow was generalized as equivalent Manning coefficient, and the velocity field was obtained by solving two-dimensional shallow water equations. The model defined that new vegetation was added in areas where the velocity was less than the velocity threshold, and conversely, vegetation was destroyed in areas where the flow velocity exceeded the velocity threshold. The model was used to explore the effect of velocity threshold, initial vegetation coverage, and relative water depth (the ratio of the flow depth in the floodplain to that over main channel) on final vegetation coverage and longitudinal dispersion coefficient (Ke) in compound channels, and compare the difference of vegetation evolution between rectangular channels and compound channels. Results showed that the velocity threshold played a decisive role in vegetation evolution, and the effect of relative water depth and cross section type on vegetation evolution was only reflected when the velocity threshold was small. The longitudinal dispersion coefficient gradually increased with the expansion of vegetation, and tended to a constant value (Kf) when a stable vegetation landscape was reached. As the relative water depth decreased, the longitudinal dispersion coefficient presented an increasing trend. Regular distribution of initial vegetation patches can produce larger longitudinal dispersion coefficient compared to the cases of random distribution in compound and rectangular channels, and the increasing effect was more significant in compound channels.

Keywords: Compound channel; Longitudinal dispersion coefficient; Vegetation evolution; Velocity threshold.

MeSH terms

  • Rivers*
  • Water*

Substances

  • Water