Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis

J Med Chem. 2022 Aug 11;65(15):10567-10587. doi: 10.1021/acs.jmedchem.2c00722. Epub 2022 Aug 1.

Abstract

While ruthenium arene complexes have been widely investigated for their medicinal potential, studies on homologous compounds containing a tridentate tris(1-pyrazolyl)methane ligand are almost absent in the literature. Ruthenium(II) complex 1 was obtained by a modified reported procedure; then, the reactions with a series of organic molecules (L) in boiling alcohol afforded novel complexes 2-9 in 77-99% yields. Products 2-9 were fully structurally characterized. They are appreciably soluble in water, where they undergo partial chloride/water exchange. The antiproliferative activity was determined using a panel of human cancer cell lines and a noncancerous one, evidencing promising potency of 1, 7, and 8 and significant selectivity toward cancer cells. The tested compounds effectively accumulate in cancer cells, and mitochondria represent a significant target of biological action. Most notably, data provide convincing evidence that the mechanism of biological action is mediated by the inhibiting of mitochondrial calcium intake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Calcium
  • Cell Line, Tumor
  • Coordination Complexes* / pharmacology
  • Homeostasis
  • Humans
  • Mitochondria
  • Neoplasms* / drug therapy
  • Ruthenium* / pharmacology
  • Water

Substances

  • Antineoplastic Agents
  • Coordination Complexes
  • Water
  • Ruthenium
  • Calcium