Erbium-doped ZBLAN fiber laser pumped at 1.7 µm for emission at 2.8 µm

Opt Lett. 2022 Aug 1;47(15):3684-3687. doi: 10.1364/OL.463186.

Abstract

In this paper, a novel, to the best of our knowledge, efficient pump scheme for an erbium-doped fluoride fiber laser with emission at 2.8 µm in the mid-infrared region is proposed and demonstrated. A singular pump source at 1.7 µm is used to excite Er3+ ions from ground state 4I15/2 to lower laser level 4I13/2, and then further boost the ions to 4I9/2, where a non-radiation transition occurs for the Er3+ ions to reach upper laser level 4I11/2. This scheme can efficiently recycle ions on the lower laser level 4I13/2 by excited-state absorption, therefore realizing population inversion and enhancing laser efficiency. In our demonstration, a 660-mW laser output at 2.8 µm is achieved from a 1.7-µm core-pumped erbium-doped fluoride fiber laser, where the slope efficiency versus launched pump power is 23.7%. The proposed innovative pump scheme shows great potential to realize high-power, high-efficiency erbium-doped fiber lasers at 2.8 µm.