Structural Model for Transient Pt Oxidation during Fuel Cell Start-up Using Electrochemical X-ray Photoelectron Spectroscopy

ACS Appl Mater Interfaces. 2022 Aug 10;14(31):36238-36245. doi: 10.1021/acsami.2c09249. Epub 2022 Jul 29.

Abstract

Potential spikes during the start-up and shutdown of fuel cells are a major cause of platinum electrocatalyst degradation, which limits the lifetime of the device. The electrochemical oxidation of platinum (Pt) that occurs on the cathode during the potential spikes plays a key role in this degradation process. However, the composition of the oxide species formed as well as their role in catalyst dissolution remains unclear. In this study, we employ a special arrangement of XPS (X-ray photoelectron spectroscopy), in which the platinum electrocatalyst is covered by a graphene spectroscopy window, making the in situ examination of the oxidation/reduction reaction under wet conditions possible. We use this assembly to investigate the change in the oxidation states of Pt within the potential window relevant to fuel cell operation. We show that above 1.1 VRHE (potential vs reversible hydrogen electrode), a mixed Ptδ+/Pt2+/Pt4+ surface oxide is formed, with an average oxidation state that gradually increases as the potential is increased. By comparing a model based on the XPS data to the oxidation charge measured during potential spikes, we show that our description of Pt oxidation is also valid during the transient conditions of fuel cell start-up and shutdown. This is due to the rapid Pt oxidation kinetics during the pulses. As a result of the irreversibility of Pt oxidation, some remnants of oxidized Pt remain at typical fuel cell operating potentials after a pulse.

Keywords: Nafion; X-ray absorption spectroscopy; X-ray photoelectron spectroscopy; electrocatalyst; fuel cells; graphene; nanoparticles; platinum oxidation.