Emission Enhancement and Energy Transfers in YV0.5P0.5O4 Nanoparticles Codoped with Eu3+ and Bi3+ Ions

Inorg Chem. 2022 Aug 8;61(31):12237-12248. doi: 10.1021/acs.inorgchem.2c01465. Epub 2022 Jul 28.

Abstract

In this study, solid-state solutions of yttrium orthovanadate-phosphate with varying concentrations of codopants (Eu3+, Bi3+) have been obtained via coprecipitation. An ionic radii mismatch between V5+ and P5+ substituents is manifested in broad XRD lines. The sharpening of the XRD lines is observed with increasing bismuth ions concentration in the Eu3+ codoped YV0.5P0.5O4 matrix. The difference in the number of the Stark components for the 5D07FJ transitions indicates changes in the lattice and a number of possible Eu3+ sites. A thorough, systematic spectroscopic analysis of YV0.5P0.5O4: x mol % Eu3+, y mol % Bi3+ was conducted at room temperature and 5 K. Metal-to-metal energy transfers occurring between Eu3+, V5+, and Bi3+ optically active ions have been investigated. Additionally, efficiency of the Bi3+-Eu3+ energy transfer (ET) was calculated.