Oxidative Cyclodehydrogenation of Trinaphthylamine: Selective Formation of a Nitrogen-Centered Polycyclic π-System Comprising 5- and 7-Membered Rings

Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202205287. doi: 10.1002/anie.202205287. Epub 2022 Aug 24.

Abstract

We describe a new type of nitrogen-centered polycyclic scaffold comprising a unique combination of 5-, 6-, and 7-membered rings. The compound is accessible through an intramolecular oxidative cyclodehydrogenation of tri(1-naphthyl)amine. To the best of our knowledge this is the very first example of a direct 3-fold cyclization of a triarylamine under oxidative conditions. The unusual ring fusion motif is confirmed by X-ray crystallography and the impact of cyclization on the electronic and photophysical properties is investigated both experimentally and theoretically based on density-functional theory (DFT) calculations. The formation of the unexpected product is rationalized by detailed mechanistic studies on the DFT level. The results suggest the cyclization to occur under kinetic control via a dicationic mechanism.

Keywords: Dehydrogenation; Density Functional Calculations; Nitrogen Heterocycles; Polycyclic Systems; Reaction Mechanism.