Nonlocal Manipulation of Magnetism in an Itinerant Two-Dimensional Ferromagnet

ACS Nano. 2022 Aug 23;16(8):12437-12444. doi: 10.1021/acsnano.2c03626. Epub 2022 Jul 28.

Abstract

Two-dimensional (2D) magnets are crucial in the construction of 2D magnetic and spintronic devices. Many devices, including spin valves and multiple tunneling junctions, have been developed by vertically stacking 2D magnets with other functional blocks. However, owing to limited local interactions at the interfaces, the device structures are typically extremely complex. To solve this problem, the nonlocal manipulation of magnetism may be a good solution. In this study, we use the magneto-optical Kerr effect technique to demonstrate the nonlocal manipulation of magnetism in an itinerant 2D ferromagnet, Fe3GeTe2 (FGT), whose magnetism can be manipulated via an antiferromagnet/ferromagnet interface or a current-induced spin-orbital torque placed distant from the local site. It is discovered that the coupling of a small piece of MnPS3 (∼40 μm2) with FGT can significantly enhance the coercive field and emergence of exchange bias in the entire FGT flake (∼2000 μm2). Moreover, FGT flakes with different thicknesses have the same coercive field at low temperatures if they are coupled together. Our study provides an understanding of the basic magnetism of 2D itinerant ferromagnets as well as opportunities for engineering magnetism with an additional degree of freedom.

Keywords: magnetic domain; magnetic proximity effect; spin−orbit torque; two-dimensional magnets; van der Waals heterostructures.